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Abstract We prove the existence of an invariant measure for a large class of random
processes with discrete time without assuming their linearity. Our main examples are
“processes with variable length”, in which components may appear and disappear in the
course of functioning. One of these examples displays non-uniqueness of invariant measure
in a 1-D process.

Keywords Interactive random processes · Invariant measure · Fixed point ·
Schauder-Tychonoff theorem · Variable length · Non-linearity

1 Introduction and the General Theorem

Random processes with discrete time are usually defined by some transition operator or
just operator, which transforms the measure at any time step into the measure at the next
time step. A measure μ is called invariant for an operator P if μ = μP . (We write op-
erators between measures and events, therefore on the right side of measures.) Existence
and uniqueness of an invariant measure are among the most important features of an op-
erator. If an operator has an invariant measure, it generates a stable process, which may
model some equilibria in the nature. If an operator has two invariant measures, it generates
a process, which certainly is not completely chaotic. From the mathematical point of view,
the problem of existence of invariant measure is a special case of the well-known fixed-point
problem.

It seems that in the context of random processes with an infinite set of interacting com-
ponents existence of an invariant measure was proved till now mainly for linear operators,
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which is understandable, because linearity is very common for random processes. Even
when the word “non-linearity” is used, the transition operators are mostly linear. The most
usual way to prove existence of invariant measure of a random process is to take an arbi-
trary initial measure, iteratively apply to it the transition operator P , prove that the Cesàro
transformation of the resulting sequence has at least one accumulation point and prove that
this point is invariant for P . For example, one version of this method was presented in [5,
Chap. 5] and another, more general version is presented in [8].

However, all versions of this method work only for linear operators. Here we prove ex-
istence of invariant measure for a larger class of operators of random processes without as-
suming their linearity. This allows us to apply this proof to some variable-length processes
(like those studied in [7]), whose operators are mostly non-linear.

Let us take any set � and a countable algebra A of its subsets. We denote by σ(A)

the minimal σ -algebra, which contains A. Let M be the set of normalized measures (or
probability distributions, which is the same) on σ(A). Let us say that a sequence of measures
μn ∈ M tends or converges to a measure λ ∈ M if μn(S) tends to λ(S) for every S ∈ A.

In fact, we shall deal with some M′ ⊂ M and call maps from M′ to M′ operators. We
say that an operator P : M′ → M′ is continuous if whenever a sequence μn ∈ M′ tends to
λ ∈ M′, the sequence μnP tends to λP . (The well-known sequential continuity.) We call a
set M′ ⊂ M compact if every sequence μn ∈ M′ has a subsequence, which converges to an
element of M′. We say that a set M′ ⊂ M is convex if for any μ,ν ∈ M′ and any k ∈ [0,1]
the measure k · μ + (1 − k) · ν also belongs to M′. A measure μ ∈ M′ is called invariant
for an operator P if μ = μP .

Theorem 1 For any non-empty compact convex M′ ⊂ M, any continuous operator
P : M′ → M′ has an invariant measure.

Before proving this theorem, let us make several observations. Given a topology T on a
set S, for any S ′ ⊂ S we call restriction of T to S ′ and denote by T | S ′, the topology on S ′,
whose elements are intersections of S ′ with elements of T .

In fact, our Theorem 1 refers to the following topology on M. Let us call a set K ⊂ M
closed in M if whenever a sequence μn ∈ K converges to some λ ∈ M, the measure λ

also belongs to K. After that we call a set K ⊂ M open in M if its complement M \ K is
closed in M. We denote this topology by Tseq. It is easy to observe that the continuity and
compactness defined above are equivalent to continuity and compactness in Tseq | M′.

We shall use the well-known Schauder-Tychonoff theorem. In [2, Sect. 3.6] it is stated
essentially as follows:

Let L be a separated locally convex topological linear space,

K a non-void compact convex subset of L, P any continuous

map of K into itself. Then P admits at least one fixed point.

⎫
⎪⎬

⎪⎭
(1)

Here continuity and compactness are in the topology on that space restricted to that set.
Since every normed linear space can be easily transformed into a separated locally convex
topological linear space, we can use this theorem as soon as we put M into a normed linear
space; let us do it.

Applying the Carathéodory extension theorem (see e.g. [1, p. 19]) to our case, we con-
clude that any normalized measure on A has a unique extension to a measure on σ(A), which
is also normalized. Thus a generic element of M is determined by its values on elements
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of A. Thus M may be interpreted as the set of maps μ : A → R such that

μ(∅) = 0, μ(�) = 1, (2)

μ(S) ≥ 0 for all S ∈ A, (3)

μ(S1 ∪ S2) + μ(S1 ∩ S2) = μ(S1) + μ(S2) for all S1, S2 ∈ A. (4)

Since A is countable, we can enumerate it in some order

A = {C1, C2, C3, . . .}. (5)

Also we choose a sequence of positive numbers w1,w2,w3, . . . , whose sum is finite. We call
a pseudo-measure any map μ : A → R without assuming (2), (3) or (4). Given a pseudo-
measure μ, we define its norm as

‖μ‖ =
∞∑

i=1

wi · |μ(Ci)|. (6)

We denote by Mnorm the set of those pseudo-measures, whose norm (6) is finite. Thus,
Mnorm is a normed linear space, which contains M. Having a norm, we define a metric in
the usual way and then topology on Mnorm, which we denote by Tnorm. It is easy to prove
that the topologies Tseq and Tnorm | M coincide.

Proof of Theorem 1 From this theorem’s assumptions, M′ is a non-empty convex compact
subset of Mnorm. Then all the conditions of (1) are fulfilled for the normed space Mnorm

with the norm (6), for the set M′ in it and for any P : M′ → M′ continuous in the topology
Tseq = Tnorm | M. The same is true in the topology Tnorm | M′ = Tseq | M′. Hence follows
our Theorem 1. �

2 Continuity vs. Locality

For any M′ ⊂ M, any natural number n and any sets S1, . . . , Sn ∈ A, let us define the set

Dom(S1, . . . , Sn | M′) ⊂ [0,1]n

as follows:

Dom(S1, . . . , Sn | M′) def= {(μ(S1), . . . ,μ(Sn)) : μ ∈ M′}.
In other words, an n-tuple

(x1, . . . , xn) ∈ [0,1]n

belongs to Dom(S1, . . . , Sn | M′) if and only if there is μ ∈ M′ such that

μ(S1) = x1, . . . ,μ(Sn) = xn.

Lemma 1 Every set Dom(S1, . . . , Sn | M′) is compact.
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Proof Since [0,1]n is compact, it is sufficient to prove that the set

Dom(S1, . . . , Sn | M′)

is closed in [0,1]n. Suppose that we have a sequence

v1, v2, v3, . . . ∈ Dom(S1, . . . , Sn | M′),

which converges to some w ∈ [0,1]n. Every vk is an n-tuple vk = (vk
1, . . . , v

k
n), for which

there is μk ∈ M′ such that

μk(S1) = vk
1, . . . ,μ

k(Sn) = vk
n.

Since M′ is compact, we can select a sub-sequence of this sequence, which converges to
some λ ∈ M′. Therefore

w = (λ(S1), . . . , λ(Sn)) ∈ Dom(S1, . . . , Sn | M′).

Lemma 1 is proved. �

For any M′ ⊂ M we call an operator P : M′ → M′ quasi-local if for any S ∈ A and
any ε > 0 there is a natural number n, sets S1, . . . , Sn ∈ A and a continuous function f :
Dom(S1, . . . , Sn | M′) → [0,1] such that

∀μ ∈ M′ : |μP(S) − f (μ(S1), . . . ,μ(Sn))| < ε. (7)

Theorem 2 For any compact M′ ⊂ M, any quasi-local operator P : M′ → M′ is contin-
uous.

Proof For any S ∈ A and any real number a we call each of the sets

{μ ∈ M : μ(S) < a}, {μ ∈ M : a < μ(S)}
a gate. We denote by Tgates the minimal topology on M, which includes all the gates. It
is easy to observe that the topologies Tseq and Tgates coincide. So it is sufficient to prove
continuity of P in Tgates.

Let us choose any μ ∈ M′, any S ∈ A and any ε > 0. We need only to present an inter-
section of several gates � 
 μ such that

∀ν ∈ � : |νP (S) − μP(S)| < ε.

Since P is quasi-local, there are a natural number n, sets S1, . . . , Sn ∈ A and a continuous
function f : Dom(S1, . . . , Sn | M′) → [0,1] such that

|a1 − b1| < ε

3
, |a2 − b2| < ε

3
, (8)

where we denote

a1 = νP (S), b1 = f (ν(S1), . . . , ν(Sn)),

a2 = μP(S), b2 = f (μ(S1), . . . ,μ(Sn)).
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Due to Lemma 1, the set Dom(S1, . . . , Sn | M′) is compact. Hence, since the function f

is continuous, it is uniformly continuous. Therefore there is δ > 0 such that

∀μ, ν ∈ M′ : |ν(S1) − μ(S1)| < δ, . . . , |ν(Sn) − μ(Sn)| < δ �⇒ |b1 − b2| < ε

3
.

Now let us choose � as follows:

� = {λ ∈ M′ | ∀i = 1, . . . , n : μ(Si) − δ < λ(Si) < μ(Si) + δ}.

Then for any ν ∈ �

|b1 − b2| < ε

3
.

Together with the inequalities (8) this implies that |a1 − a2| < ε, which is all we need.
Theorem 2 is proved. �

Now let us go to a still narrower class of operators. For any M′ ⊂ M, we call an operator
P : M′ → M′ local if for any S ∈ A there is a natural number n, sets S1, . . . , Sn ∈ A and a
continuous function

f : Dom(S1, . . . , Sn | M′) → [0,1]
such that

∀μ ∈ M′ : μP(S) = f (μ(S1), . . . ,μ(Sn)). (9)

Evidently, all local operators are quasi-local and therefore continuous. (In [8] the terms
“local” and “quasi-local” are attributed to narrower classes of operators.)

Now let us speak about so-called cellular automata. We cannot present a single “classi-
cal” definition of cellular automata, but it seems that all their usage was based on the idea of
an infinite (or large) set of components, locally interacting with each other in a random way.
To fix the ideas, let us use the following ad hoc definition. Our configuration space is

� =
∏

i∈W

Si,

where W is countable and every Si is finite. Let T be the product topology, whose factors
are discrete topologies on all Si . Suppose that we also have an arbitrary auxiliar space Aux
and an arbitrary probability distribution ξ on it. Also for every i ∈ W we have a finite set
Vi ⊂ W and a function

fi :
∏

j∈Vi

Sj × Aux → Si.

Then a cellular automaton is a linear map P : M → M defined as follows: for any μ ∈ M
the result of application of P to μ is the measure on T induced by the product of the
measures μ and ξ with the map D : �× Aux → � resulting in a configuration y, whose i-th
component for every i is the result of application of the function fi to the components xj

for all j ∈ Vi and to z ∈ Aux.
This definition is more general than some well-known definitions (e.g. that in [5,

Chap. 5]). It is evident that all cellular automata thus defined are local operators, so our
Theorem 1 applies to them also.



560 J Stat Phys (2007) 129: 555–566

3 Applications to Variable-Length Operators

In this part we omit some technical details, which will be described in detail in another pub-
lication [4]. Starting here, we consider only the special case, in which � is a bi-infinite prod-
uct AZ, where A is a non-empty finite set, which we call alphabet. Elements of the alphabet
are called letters. A generic element of � is a bi-infinite sequence x = (. . . , x−1, x0, x1, . . .),
where all xi ∈ A. Taking the discrete topology on A, we obtain the algebra A as the minimal
algebra, which contains all the sets of the form

{x ∈ � | xi+1 = a1, . . . , xi+n = an}, (10)

where i ∈ Z and a1, . . . , an ∈ A. The class of sets (10) also serves as a base for the product
topology on �, in which � is compact due to Tychonoff compactness theorem (see e.g. [1,
p. 215]). Hence the set M of normalized measures on σ(A) is compact also.

We call a normalized measure on � shift-invariant if it is invariant under all shifts
along Z. We shall use the abbreviation “s.i.n. measures” for shift-invariant normalized mea-
sures. We denote by MA the set of s.i.n. measures on AZ. Notice that MA is closed in M,
whence it is compact.

Any finite sequence of letters is called a word. The length of a word W , denoted by |W |,
is the number of letters in it. Any letter may be considered as a word of length one. There is
the empty word, denoted by 
, whose length is zero. We assume that comma and brackets
never belong to our alphabet and if we write several words and letters one after another,
perhaps separated by commas or included in brackets, they form one word (commas and
brackets eliminated), which we call their concatenation. Dealing with s.i.n. measures, we
may use the following simplified notation for any word W = (a1, . . . , an):

μ(W) = μ(a1, . . . , an) = μ(xi+1 = a1, . . . , xi+n = an). (11)

Due to shift-invariance of μ, the probability (11) does not depend on i and we call it the
frequency of the word W in the measure μ. Any s.i.n measure on � is determined by its val-
ues (11) on all words in the alphabet A. Applying the conditions (2), (3) and (4) to the present
case, we see that to form a s.i.n. measure, all the numbers μ(W) must be non-negative, μ on
the empty word must equal one and for any letter a and any word W (including the empty
one) must be

μ(W) =
∑

a∈A

μ(W,a) =
∑

a∈A

μ(a,W),

where (W,a) and (a,W) are concatenations of the word W and letter a in the two possible
orders. Given two words W , V , where |W | ≤ |V |, we say that W enters V at a position k if
1 ≤ k ≤ |V |−|W |+1 and W coincides with the word consisting of those letters of V , which
occupy positions from k to k +|W |− 1 in it. We call a word W self-overlapping if there is a
word V such that |V | < 2 · |W | and W enters V at two different positions. A word is called
self-avoiding if it is not self-overlapping. In particular, the empty word is self-avoiding.

Now we are ready to speak about a class of non-linear operators from MA to MA, which
we call substitution operators. They are a special case of variable length operators, which
we discussed in [6, 7].

Although we shall speak only about some particular classes of operators, it makes sense
to start with a general, although informal explanation. A generic substitution operator is
denoted by (G

ρ→ H), where G and H are words, G is self-avoiding and ρ is a number
in [0,1]. Informally speaking, this operator substitutes every entrance of the word G in every
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configuration by the word H with a probability ρ or leaves it unchanged with a probability
1 − ρ independently of states and fate of the other components. However, we define only
how our operators act on s.i.n measures, but not on configurations. We have to avoid the bad
case, in which

Bad case: G is non-empty, H is empty and ρ = 1. (12)

In the bad case the substitution operator cannot be applied to the measure concentrated
in the bi-infinite concatenations . . . ,G,G,G, . . . of the word G. In all the other cases a
substitution operator can be applied to all s.i.n measures. For every substitution operator
and every μ ∈ MA, we define a coefficient of extension or just extension for short, denoted
by Ext, which equals

Ext = 1 + ρ · (|H | − |G|) · μ(G). (13)

Informally speaking, extension is that coefficient, by which is multiplied the length of a
long word distributed according to the given measure μ in result of action of the operator in
question. We shall provide a rigorous treatment of extension in [4]. Right now we only state
that it is positive.

Lemma 2 Except in the bad case (12), for every substitution operator there is a positive
constant such that extension of this operator, when it is applied to any s.i.n. measure, is not
less than this constant.

Proof If |G| ≤ |H |, Ext ≥ 1. Now let |G| > |H |. This implies that |G| > 0. Then we notice
that since |G| is self-avoiding, μ(G) ≤ 1/|G| for any μ ∈ MA. Therefore in this case

Ext = 1 − ρ · (|G| − |H |) · μ(G) ≥ 1 − ρ · |G| − |H |
|G| ≥ 1 − ρ + ρ · |H |

|G| .

If ρ < 1, the last expression is positive because it is not less than 1 − ρ. If ρ = 1, the
last expression equals |H |/|G|, which is positive whenever H is not empty. Lemma 2 is
proved. �

Now we are going to define several specific classes of substitution operators. In every
case P denotes the operator in question, μ ∈ MA denotes an arbitrary s.i.n. measure and
μP denotes the result of application of P to μ.

Conversion: (g
ρ→ h) is a subclass of cellular automata. It is the only linear operator in our

list. Given two different letters g,h ∈ A, conversion of g into h is a map from MA to MA.
Informally, conversion means that every occurrence of the letter g is either substituted by h

with a probability ρ ∈ [0,1] or left unchanged with a probability 1 − ρ independently from
presence and fate of other occurrences. The extension in this case equals one. We define the
value of the resulting measure μP at any non-empty word (a1, . . . , an) as follows:

μP(a1, . . . , an) =
∑

b1,...,bn∈A

(
n∏

i=1

F(ai | bi) × μ(b1, . . . , bn)

)

,
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where

F(ai | bi) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − ρ if bi = g, ai = g,

ρ if bi = g, ai = h,

0 if bi = g and ai is neither g nor h,

1 if bi �= g and ai = bi ,

0 if bi �= g and ai �= bi .

Compression: (G
1→ h). Given a non-empty self-avoiding word G in an alphabet A and

a letter h /∈ A, compression of G into h is the following map from MA to MA′ , where
A′ = A∪{h}: every occurrence of the word G is substituted by the letter h with probability 1.
The extension in this case equals

Ext = 1 − (|G| − 1) · μ(G) ≥ 1

|G| .

Now let us define μP(W) for any non-empty word W in the alphabet A ∪ {h}: If the word
G enters W , then μP(W) = 0. In the other case,

μP(W) = μ(W ′)
Ext

,

where W ′ is the word in the alphabet A obtained from W by substituting the word G instead
of every occurrence of the letter h.

Decompression: (g
1→ H). Informally speaking, given a non-empty word H in the alpha-

bet A and a letter g /∈ A, decompression of g into H is the following map from MA′ to MA,
where A′ = A ∪ {g}: every occurrence of the letter g turns into the word H with probabil-
ity 1. The extension in this case equals

Ext = 1 + (|H | − 1) · μ(g).

We shall define decompression as a superposition of several operators.
First, we define decompression of a letter g to a word (h1, h2) with a rate 1, where the

letters h1 and h2 are different from each other and do not belong to the alphabet A, in which
the original measure μ was given. The extension in this case equals 1 + μ(g). Let us define
the value of μP(W) for any non-empty word W in the alphabet A ∪ {h1, h2}. We define
another word W ′ as a concatenation W ′ = (U,W,V ), where

U =
{

h1 if the first letter of W is h2,


 otherwise

and

V =
{

h2 if the last letter of W is h1,


 otherwise.

After that we turn every entrance of the word (h1, h2) in W ′ into g and denote the result-
ing word by W ′′. (This is unambiguous because the word (h1, h2) is self-avoiding.) Now, if
W ′′ contains at least one entrance of h1 or h2, then μP(W) = 0. Otherwise

μP(W) = μ(W ′′)
1 + μ(g)

.
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Second, we define decompression of a letter g to a word (h1, h2, . . . , hn) with a rate 1,
where the letters h1, . . . , hn are different from each other and do not belong to the alphabet A

in which the original measure μ was given. We define it by induction in n. The case n = 2
is treated above. Now for any n > 2 we define this decompression as a superposition of
decompression of g into (h1, k) and a decompression of k into (h2, . . . , hn).

Finally, we define decompression of a letter g into an arbitrary word (h1, . . . , hn), whose
letters may coincide with each other and/or belong to the original alphabet as a superposition
of n + 1 operators: first, decompression of g into a word (k1, . . . , kn) of the same length, all
of whose letters are different from each other and do not belong to A and then n conversions
of ki into hi for all i = 1, . . . , n, each with a rate 1.

Insertion: (

ρ→ h). Informally, insertion of a letter h /∈ A into a measure in the alphabet A

with a rate ρ ∈ [0,1] means that a letter h is inserted with the probability ρ between every
two neighbor letters independently from other places. The extension in this case equals
1 + ρ. Now let us take any non-empty word W in the alphabet A ∪ {g} and define μP(W)

as follows: If W contains the word (h,h), then μP(W) = 0. If W does not contains (h,h),
then

μP(W) = 1

1 + ρ
· μ(W ′) · ρN1 · (1 − ρ)N2 ,

where W ′ is the word obtained from W by deleting all the letters h, N1 is the number of
letters h in W and N2 is the number of pairs of consecutive letters in W , both of which are
not h.

Deletion: (g
ρ→ 
). Informally, deletion of a letter g ∈ A from a measure in the alphabet A

with a rate ρ ∈ [0,1) means that every occurrence of g either disappears with a probability
ρ or remains unchanged with a probability 1 − ρ independently from other occurrences.
The extension in this case equals 1 − ρ · μ(g). The value of μP at any non-empty word
(a0, . . . , ak) is

1

1 − ρ · μ(g)
·

∞∑

n1,...,nk=0

μ(a0, g
n1 , a1, g

n2 , . . . gnk , ak) · ρn1+···+nk · (1 − ρ)N, (14)

where N is the number of entrances of g in (a0, . . . , ak). Deletion is the only operator in our
list, which needs the condition ρ < 1.

Now let us speak about continuity of these operators. Compression, Decompression,
Conversion and Insertion are evidently local, therefore continuous for all ρ ∈ [0,1]. Dele-
tion is not local, but we are going to prove that it is quasi-local for all ρ < 1. Let us substitute
the infinite sum in the numerator of the right part of (14) by a finite sum of the same terms,
only for n1, . . . , nk from zero to a large enough number M . We get

1

1 − ρ · μ(g)
·

M∑

n1,...,nk=0

μ(a0, g
n1 , a1, g

n2 , . . . gnk , ak) · ρn1+···+nk · (1 − ρ)N . (15)

We take the expression (15) as the function f in the formula (7). Those values of μ, which
are used in (15), will serve as μ(S1), . . . ,μ(Sn) in (7). Since ρ < 1, our function f is defined
and continuous on [0,1]n, therefore on Dom(S1, . . . , Sn | MA). It remains to choose an
arbitrary ε > 0 and M large enough to make the modulo of the difference between the
infinite sum (14) and the finite sum (15) less than ε. We can choose M so large that

k · ρM+1 < ε · (1 − ρ)k+1.
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Let us show that this value of M is large enough. The difference between (14) and (15) is

1

1 − ρ · μ(g)
·

∑

∃i:ni>M

μ(a0, g
n1 , a1, g

n2 , . . . gnk , ak) · ρn1+···+nk · (1 − ρ)N, (16)

where the sum is taken over only those k-tuples, in which at least one term exceeds M . This
sum is estimated by a sum of k sums, in which one term exceeds M and all the others take
all the values from zero to infinity. We can only augment our sum by substituting all the
values of μ and all the factors 1 − ρ by ones. Thus the expression (16) does not exceed a
sum of k equal terms, which can be written as k times the first term, i.e.

k

1 − ρ

∞∑

n1=M+1

∞∑

n2,...,nk=0

ρn1+...+nk ≤ ρM+1 · k · (1 − ρ)−(k+1).

With the chosen value of M this expression is less than ε. Thus Deletion is quasi-local for
all ρ < 1.

We conclude that all the operators defined above are continuous, whence all their finite
superpositions are continuous also. Let us show that these superpositions include a large
variety of possibilities. For example, if we want some non-empty self-avoiding word H to
appear with a rate ρ into a measure in an alphabet A, we may first use Insertion to make
some special letter g /∈ A appear with the rate ρ and then use Decompression to turn every
occurrence of g into H . If we want some non-empty self-avoiding word G to disappear
with a rate ρ < 1 from a measure in an alphabet A, we may first use Compression to turn
every occurrence of G into some special letter h /∈ A, then use Deletion to make every
occurrence of h disappear with the rate ρ and finally use Decompression to expand the
remaining occurrences of h back into G. Finally, if we have two non-empty self-avoiding
words G and H in an alphabet A and want G to turn into H with a rate ρ < 1, we may
first use Compression to turn every occurrence of G into some special letter g /∈ A, then
use Conversion to turn every occurrence of g into another letter h /∈ A with the rate ρ and
finally use Decompression two times to turn all the occurrences of g back into G and all the
occurrences of h into H . Everyone of these superpositions is continuous and therefore has
an invariant measure due to Theorem 1.

4 Application to the Process Studied in [7]

In [7] we considered alphabet A = {⊕,�}, whose elements were called plus and minus,
and two specific operators: flip denoted by Flipβ and annihilation denoted by Annα . Flip is

a special case of Conversion. In our present notations, Flipβ is (� β→ ⊕) as it turns every
minus into plus with a probability β independently from the fate of other components. Anni-
hilation Annα is ((⊕,�)

α→ 
) as it makes every entrance of the self-avoiding word (⊕,�)

disappear with a probability α < 1 independently from fates of the other components. We
iteratively applied the superposition of these two operators (first flip, then annihilation) to
the initial measure δ�, concentrated in the configuration “all minuses” and denoted by μt

the resulting sequence of measures:

μt = δ�(Flipβ Annα)
t .
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The main result of [7] with a correction in [3] was this:

for all natural t the frequency of pluses in the measure μt

does not exceed 250 · β/α2.

}

(17)

Now we can prove more:

Theorem 3 For all β ∈ [0,1] and α ∈ (0,1) the operator Flipβ Annα has an invariant mea-
sure, whose frequency of pluses does not exceed 250 · β/α2.

Proof First let us speak about convexity. Given any measures μ,ν, we denote by Conv(μ, ν)

their convex hull, that is

Conv(μ, ν) = {kμ + (1 − k)ν | 0 ≤ k ≤ 1}.
In [4] we shall prove that

λ ∈ Conv(μν) �⇒ λP ∈ Conv(μP,νP ), (18)

where P is any substitution operator. For linear operators it is obvious. Here we use this
property only for Flipβ with any β ∈ [0,1] and Annα with any α ∈ (0,1).

Now let us speak about continuity. Evidently, flip is local and therefore continuous. Re-
garding annihilation, we shall not use its representation given in [7]. Instead we represent it
as a superposition of the following three operators. First we use Compression which turns
every word (⊕,�) into one letter g, which is neither ⊕ nor �. Then we use Deletion, which
deletes the letter g with the rate α. Finally, we use Decompression, which transforms every
remaining letter g back into the word (⊕,�). Since all the three operators are continuous
on MA′ , where A′ = A ∪ {g}, all their superpositions are continuous also, whence P is
continuous on MA. Now let us denote by M′ the closure in MA of the convex hull of the
measures μ0,μ1,μ2,μ3, . . . . Evidently, M′ is a non-empty convex closed subset of MA.
Since MA is compact, M′ is also compact.

Now let us denote P = Flipβ Annα . Due to the formula (18) and continuity of P , if
μ ∈ M′, then μP also belongs to M′. Therefore we can apply (1) to conclude that M′
contains a fixed point for the operator P . It follows from (17) that the frequency of pluses
does not exceed 250 · β/α2 for all elements of M′ including that fixed point. Theorem 3 is
proved. �

Since the measure δ⊕ concentrated in the configuration “all pluses” is invariant for the
operator Flipβ Annα , this operator has at least two different invariant measures whenever
β < α2/250.
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